Abstract of the seminar:
"The Nash equilibrium, the main solution concept in analytical game theory, cannot make precise predictions about the outcome of repeated mixed-motive games. Nor can it tell us much about the
dynamics by which a population of players moves from one equilibrium to another. These limitations, along with concerns about the cognitive demands of forward-looking rationality, have motivated efforts to explore backward-looking alternatives to analytical game theory. Most of the effort has been invested in evolutionary models of population dynamics. We shift attention to a learning-theoretic alternative. Computational experiments with adaptive agents identify a fundamental solution concept for social dilemmas?!stochastic collusion?!based on a random walk from a self-limiting noncooperative equilibrium into a self-reinforcing cooperative equilibrium. However, we show that this solution is viable only within a narrow range of aspiration levels. Below the lower threshold, agents are pulled into a deficient equilibrium that is a stronger attractor than mutual cooperation. Above the upper threshold, agents are dissatisfied with mutual cooperation. Aspirations that adapt with experience (producing habituation to stimuli) do not gravitate into the window of viability; rather, they are the worst of both worlds. Habituation destabilizes cooperation and stabilizes defection. Results from the two-person problem suggest that applications to multiplex and embedded relationships will yield unexpected insights into the global dynamics of cooperation in social dilemmas. In this talk, we will review the social learning mechanism which is used to find ESS solutions of social dilemma, and will also disscuss some future works related this topic. "
Bio: